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Outline

We describe SOLILOQUY, a lattice-based primitive de-

signed at CESG in 2007.

SOLILOQUY has several nice properties; in particular

the public key is very compact for a lattice system.

We believe that SOLILOQUY is classically secure but

were surprised to discover a potential quantum attack.

We sketch this attack, which we believe may be the

first on a lattice-based PKC scheme.

Conclusions and further research.
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SOLILOQUY
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Some mathematical background

Let n be a prime and ζ a primitve nth root of unity.

Let K = Q(ζ) be the nth cyclotomic field and O = Z[ζ]
its ring of integers. Elements of O are monic polyno-
mials of the form α =

∑n
i=1 aiζ

i ∈ O.

For primes p ≡ 1 mod n the principal ideal pO decom-
poses into a product of prime ideals pO =

∏n−1
i=1 Pi.

The prime ideals Pi are conjugates with norm N(Pi) = p
and Gal(K/Q) ≈ (Z/nZ)×. They have a simple two-
element representation P = pO + (ζ − ci)O, where the
ci are nth roots of unity in GF (p).

We will be interested in the value c = 2(p−1)/n mod p
and its prime ideal P = pO + (ζ − c)O.
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Public and private keys

A candidate private key will be a “small” ring element

α =
∑n
i=1 aiζ

i ∈ O.

These are generated randomly (by sampling the coeffi-

cients from a discrete Gaussian distribution) and tested

until we find an α such that p = N(α) is prime and

c 6≡ 1 mod p. Conjugate to get into the required form

αO = pO + (ζ − c)O.

Then set the SOLILOQUY private key to be α and its

corresponding public key to be p.
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The crypto primitive

For crypto applications we will want to define maps to

encrypt and decrypt data.

We encode a ring element ε (plaintext or ephemerals)

into an integer z (ciphertext) using the public key p :

ε :=
n−1∑
i=0

eiζ
i 7→

n−1∑
i=0

eic
i mod p =: z

We can recover a “small” ε from z and the private key

α by simply rounding:

ε = z − dzα−1c · α.
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SOLILOQUY as a GGH-type lattice scheme

Private / public lattice basis matrices with H = HNF (C) :

C =


a0 . . . an−2 an−1
an−1 an−3 an−2

... . . .
a1 an−1 a0

 , H =


1 0 . . . 0 −cn−1

0 1 0 −cn−2

... . . .
0 0 1 −c
0 0 0 p


Since α is small, C will be a reduced basis for the lattice
and decryption is Babai’s rounding algorithm.

The public key H can be reconstructed from just p,
which is very compact for a lattice cryptosystem.

(Note: Smart-Vercauteren also used this HNF con-
struction in their 2009 FHE scheme.)
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Security

The security of SOLILOQUY can be analysed via the
difficulty of two well known hard problems.

CVP. Classical CVP security via LBR is well under-
stood. There is no known significant (exponential)
quantum speed-up.

PIP: Given a representation of a principal ideal I of
O, compute a small generator α of I. The known (at
that time) classical and quantum algorithms are only
practical for number fields of small, fixed degree.

We believed for several years that since SOLILOQUY
used large degree fields it should be quantum resistant.
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Outline of a quantum attack
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Some simplifying assumptions

Likely true for our specific situation but not in general:
We know the generators for the unit group. We can
recover α from any generator of αO. It is enough to
recover α · α∗ in the ring of integers O′ = Z[ζ + ζ−1] of
K′ = Q(ζ + ζ−1).

We thus re-cast the problem as: Given a generating set
u1, . . . , ur−1 of the unit group O× recover any generator
of the principal ideal αO in the ring of integers O of a
totally real field of degree r.

This special case turns out to be tractable. Our ap-
proach is similar the work of Hallgren and co-authors
on unit groups and related number-theoretic problems.
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SOLILOQUY as a hidden lattice problem

The embedding log(ω) = (log(|σ0(ω)|), . . . , log(|σr−1(ω)|))
maps O× to a rank r − 1 lattice Λ = log(O×). Encode

α as the rank r lattice: Λα =

[
−1 log(α)
0 Λ

]
.

Hide Λα by defining a function F : Z × Rr → Rr, such
that F (k, v) = F (k′, v′) iff (k, v) ≡ (k′, v′) mod Λα.

Restrict the input domain to G ⊂ Z× Rr where

G =

(k, v) ∈ Z× Rr :
r−1∑
i=0

vi = −k log(N(α.O))


and set

F (k, v) = exp(v) · (αO)k.
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The quantum algorithm

1∗∗. For an input (k, v) ∈ G compute a “quantum fin-
gerprint” ψ(k,v) representing the lattice F (k, v).

2∗∗. Discretise and bound G and form the superposition∑
(k,v)∈G

|k, v,0〉 7→
∑

(k,v)∈G

∣∣∣k, v, ψ(k,v)

〉

3. Take a QFT over G and measure the third register
to obtain an approximate basis for the dual lattice Λ∗α.

4. Iterate the previous steps to produce many samples
close to Λ∗α.

5. Use classical LBR to compute an approximate basis
for Λα and hence α. (Requires sufficient precision.)
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Fingerprints and binning
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Lattice fingerprints

Our “quantum fingerprint” will be a model for the su-
perpositon of the short vectors in a given lattice.

Let B be a Gram-Schmidt lattice basis matrix in Rn and
let l ∈ R be some fixed length. We use an ‘enumeration’
map φ : [0, l) → Zn depending on n, B, and l, which
can be inverted at integer points (to facilitate reversible
quantum computation).

Let Cn(B, l) := { φ(x) : x ∈ [0, l) ∩ Z } . This is a dis-
cretised model for En(ρ) := Balln,ρ · B−1 in the sense
that that it fits within an ellipsoid En(ρ+ ε) and covers
all the integer points in En(ρ− ε).

En(ρ− ε) ∩ Zn ⊆ Cn(B, l) ⊆ En(ρ+ ε) ∩ Zn.
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Let O be the isometry between the Gram-Schmidt and

the “natural” bases for the lattice. Then v ∈ Cn(B, l)

indexes v ·B, a short vector in the Gram-Schmidt basis

corresponding to the natural vector v ·B ·O.

We use another lattice to partition up natural space

into cells or “bins”. Vector v ·B ·O will be replaced by

the label u of its bin, reducing precision by a carefully-

chosen scaling factor q. Define Simple binning as:

u = θB(v) := dq · v ·B ·Oc.

(The Randomised variant θR,w,B(v) := dq ·v·B ·O·R+wc
is preferable, because over many random choices R and

w, the likelihood of two vectors going into the same

bin depends only on their separation relative to q.)
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Our (simple) quantum fingerprint generator computes

|k, v〉 |0〉 7→
1√
dle

dle−1∑
x=0

|k, v〉
∣∣∣θB(k,v)(φ(x))

〉

The pure state

∣∣∣ψ(k,v)

〉
:=

1√
dle

dle−1∑
x=0

∣∣∣θB(k,v)(φ(x))
〉

is called the (simple) quantum fingerprint of (k, v).

The coherent randomised version is:

∣∣∣ψ′(k,v)〉 :=

∑
R

∑
w

∑dle−1
x=0 |R〉 |w〉

∣∣∣θR,w,B(k,v)(φ(x))
〉

√
#R ·#w · dle
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The fingerprint structure allows us to define a fidelity
between two different descriptions

Fid( (k, v), (k, v)′ ) :=
〈
ψ′(k,v) | ψ

′
(k,v)′

〉
.

A fidelity of 1 would indicate that C(B, l) · B · O and
C(B′, l) · B′ · O′, activate exactly the same set of bins
(for every R,w binning strategy) and so lattices must
be very similar, or identical. When the two lattices
are ‘essentially different’, there is no reason to expect
significant overlap in any region, and so the fidelity
should be small.

The idea is that, for correctly chosen (l, q), the numeri-
cal instablity arising from computing F (k, v) is removed
by the binning strategy, as (real, infinite) F (k, v) is re-
placed with (discrete, bounded) ψ(k,v).
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Open questions and conclusions
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We abandoned the development of SOLILOQUY in
early 2013 and are not recommending it for any real-
world applications.

However there are several interesting ideas presented
here which might benefit from further study:

* A compact public key for lattice PKC. See also Smart-
Vercauteren’s application to FHE.

* This may be the first quantum attack on a lattice-
based PKC protocol. However ours is a very special
case (cyclotomics) that does not easily generalise.

* Other approaches to lattice fingerprints are possible.
Hallgren et. al. have recently suggesed using multiple
Gaussian sampling.
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Conclusion

We have outlined one approach to lattice fingerprints

which we believe could be combined with a quantum

PIP algorithm to give an attack on SOLILOQUY.

Designing quantum-safe cryptography is difficult. It

took us several years to develop SOLILOQUY and sev-

eral more to assess its potential quantum resistance.

At this time, when many novel types of quantum-safe

cryptography are being proposed, the work of ETSI and

others will be very important in ensuring these receive

a thorough and independent assessment.
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